Linking stream fish assemblages to hydrologic alteration along a gradient of urbanization

Allison H. Roy*, Mary C. Freeman, Byron J. Freeman Seth J. Wenger, William E. Ensign, & Judith L. Meyer

> University of Georgia Kennesaw State University

*Currently ORISE fellow with the U.S. EPA, Cincinnati, Ohio

This research was funded by the University of Georgia Research Foundation and a U. S. Fish & Wildlife Service Habitat Conservation Planning Grant.

Hydrologic Alteration via Urbanization

Deforestation Impervious surfaces Soil compaction

RUNOFF

IN-STREAM EFFECTS: flashy flows

bed scour bank erosion

Evidence of Reduced Biotic Integrity with Urbanization

Objective

To determine extent to which hydrologic alteration accounts for the negative relationship between impervious cover and stream fish assemblages.

Additional Questions:

- 1) What aspects of hydrology are most important for fishes?
- 2) What characteristics of fish assemblages are most sensitive?

Possible Mechanisms of Hydrologic Impact on Fish Assemblages

Etowah River Basin Georgia

A hotspot of stream fish diversity and endemism:

- ~76 extant fish species, 4 locally endemic fish species
- ~51 extirpated mussel species
- 3 federally listed & 7 imperiled fishes

Hydrologic Alteration Variables

METHODS

Fish Sampling: Richness & Abundance Estimates

- 1) Three 50 m reaches sampled
 - → calculate species detectibility
 - → estimate RICHNESS
- 2) One 50 m reach sampled 3X
 - → calculate capture efficiencies
 - → estimate ABUNDANCES

Fish Assemblage Measures:

fluviual specialists vs lentic tolerants

50 m

- sensitive species
- endemics vs cosmopolitans

Impervious Surface Cover Affects Stream Hydrology (n=16 sites)

Increased Frequency of Large Storms & Storm Flashiness with Increased % Impervious Cover in Subcatchment (May-Aug.)

Increased Duration of Low Flows with Increased % Impervious Cover in Subcatchment (Aug.-Nov.)

Principal Components Analysis of Hydrologic Variables

		Correlation with	% Variance	Variable	
Summer (15 May-7 Aug.)		% Impervious	Explaianed	Loadings	
Baseflow (86.9%)					
	PCA 1	0.04	53.4	Magnitude	
	PCA 2	-0.02	22.3	Duration	
	PCA 3	0.44	11.2	Duration	
Stormflo	ow (92.3%)			Used DCAs	and
	PCA 1	0.64	47.3	Used PCAs % fines in ri	
	PCA 2	-0.52	21.7	to predict	
	PCA 3	-0.41	14.6	assemblages wit	
	PCA 4	0.00	9.0	multiple lii	
Autumn (15 Aug4 Nov.)				regression ar	nalysis
Baseflow (89.2%)					
	PCA 1	-0.08	75.6	Magnitude	
	PCA 2	0.70	13.6	Duration	
Stormflow (85.4%)					
	PCA 1	0.70	64.0	All	
	PCA 2	-0.22	14.1	Mix	
	PCA 3	0.31	7.3	Mix	

Tolerants & Cosmopolitans Related to Altered Stormflows & Baseflows Results of Multiple Linear Regression Analyses

LENTIC TOLERANTS

- More species with more prolonged autumn low flow durations (r²= 0.67)
- <u>Higher</u> abundances with
 - a) reduced summer storm magnitude (partial $r^2 = 0.43$)
 - b) reduced autumn low flow magnitude (partial $r^2=0.24$)

lentic tolerant & cosmopolitan

COSMOPOLITANS

- More species with
 - a) more prolonged autumn low flow durations (partial $r^2=0.38$)
 - b) increased summer stormflow volume/duration (partial r²=0.19)
- <u>Higher</u> abundances with <u>more prolonged</u> summer low flow durations ($r^2=0.35$)

Endemics & Sensitives Related to Stormflow & Sediment Alteration Results of Multiple Linear Regression Analyses

ENDEMIC SPECIES

• More species with <u>reduced</u> summer stormflow alteration (r²=0.31)

SENSITIVE SPECIES

- More species with
 - a) <u>reduced</u> summer stormflow alteration (partial r²=0.39)
 - b) lower % fine sediment (partial $r^2=0.18$)
 - c) <u>reduced</u> summer stormflow volume/duration (partial $r^2=0.14$)
- Higher abundances with
 - a) <u>lower</u> % fine sediment (partial $r^2=0.46$)
 - b) reduced autumn stormflow alteration (partial $r^2=0.25$)
 - c) <u>reduced</u> autumn stormflow magnitude, volume, & duration (partial r²=0.12)

 increased % impervious cover resulted in altered stormflows & autumn baseflows

increased stormflows (and % fine sediment) predicted sensitive species

& reduced baseflows predicted lentic tolerants and cosmopolitans

Hydrologic Alteration Predicts Fish Assemblages In Small, Urbanizing Streams

22-67% variation explained by hydrologic variables (2-36% higher than relationship with impervious)

- 1) What aspects of hydrology are most important for fishes?
 - → multiple aspects of stormflow alteration
 - → unclear importance of baseflows
- 2) What characteristics of fish assemblages are most sensitive?
 - → groups of species can respond differently
 - → species traits (e.g., specialists/generalist) important

Implications for Stream Fish Protection Requires holistic approach to watershed management

- 1) Reducing frequency, magnitude, volume, and duration of peak flows and flow "flashiness"
- 2) Maintaining adequate low flows in streams throughout the year
- 3) Reducing fine and unstable bed sediments
- 4) Minimizing impervious cover and maintaining forest cover in catchment and riparian areas

Management Questions & Decisions

- 1) Is source infiltration of stormwater a cost-effective strategy? (Or are centralized stormwater management options better?)
- 2) How much infiltration is necessary? (100% infiltration of a 2-yr storm event?)
- 3) Are fishes a good surrogate for stream ecosystem impairment?(Or are invertebrates more appropriate?)

TOOLBOX:

- adaptive management
- adaptive experimentation
- decision support modeling

